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ABSTRACT

Aim of the study

The aim of this study is to develop a methodology for parameter estimation (PE) of the main process-
units of a nuclear power plant. These parameters can be, the measure of fouling of heat exchangers
(pre- and reheaters), efficiency of water separators, thermodynamic efficiency and Stodola-number of
steam turbines etc. The employed method must be based on field measurement of the state variables,
namely, temperatures, pressures, flow rates etc., as well as on a mathematical model of the process.
This model is represented by a flow-sheeting algorithm coded in the PROBERA flow sheeting computer
program.

Design of the parameter estimation

First of all the PE procedure must be designed. Parameters, which represent the state of the units, have
to be selected. Then measurement points and state variables, which can be reliably measured as well as
computed from the process model, must be chosen. In addition these selected state variables should have
as strong correlation as possible with the selected parameters. Generally, the number of the parameters
is limited because of the stability of the applied numerical method, so their numbers are mostly less than
20. The number of the considered state variables must be more than that of the parameters, to ensure
over-determined system, consequently reliable estimation.

PE procedure
The PE procedure can be carried out in three steps

- analysis of the measurements (pre-processing phase)
- determination of ncw parameter values (processing phase)
- analysis of the result from engineer point of view (post-processing phase)

For PE procedure one can usé: linearized model, because normally change of parameters is taking place
slowly, so apart from some abnormal situations, the new parameter values will be not very far from the
old ones. It is also useful to employ normalised variables with the computed values as references.

Pre-processing phase of PE

In this phase, first one has to decide whether parameter estimation is possible at all.

If the measurement error, which consists of measuring error caused by process noise or systematical
measuring error, error of the measuring device calibration error, zero-point error etc., and the error of
the transducers, is higher than the modelling error, namely the difference between the measured and the
computed value, then further analysis is not rational.

If the modelling error is higher than the measurement error, then "wrong" measurements, so called
outliers have to be filtered out by measurement correction, if there is any. It means that measured values
will be corrected in such a way, that they will satisfy the balance equations of the flow-sheet model and
at the same time they represent the minimal deviation from the original measured values. On the bases

of the residual of this minimisation problem, % test can be carried out, to check, whether the
measurement values are acceptable or not. If they are acceptable, then no more investigation is
necessary, but in opposite case we can look for outliers. A statistical index y can be computed for every
measured variable. If this y index is close to one in absolute value, then this measured value can be
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qualified as oudier. It means, that this measurement can be repeated, left cut or substituted by its

computed value. PE process is carried out, even if the %> test remains negative after the elimination of
outliers .

Processing phase of PE

As first step, standard linear parameter estimation using least square method is employed. If some new,
estimated parameter value fall into a too wide range, with other words their new values differ from the
original ones too much, then the so called ridge-parameter estimation can be employed to make the PE
procedure more robust. ,

If we want to use constrains for certain parameters, i.e. their change can be only positive, then
constrained linear or alternatively unconstrained non-linear parameter estimation are suggested.

Post-precessing phase of PE

After the determination of the new values of the parameters, different statistics can be computed to
characterise the quality of the PE procedure. It is also possible to compute the upper and lower bound of
the parameter values at a certain confidence level.

Analysing these characteristics and taking into consideration engineering point of views, one may go
back to phase processing, and can use an other estifnation algorithm, or even may go back to phase pre-
processing, and select new measured variables or parameters in order to make the result of PE more
realistic.

Illustration of PE procedure

In order to illustrate this methodology described above, PE was carried out for the PROBERA O2_322
circuit, at three different timepoints. In that case three inputs, eleven outputs and five parameters were
selected. We could detect "wrong" measurements and our result had good agreement with result
provided by the parameter estimation module of PROBERA.

The circuit PROBERA OSCAR3 was also investigated in two different versions. First, two inputs and
29 outputs as well as 16 parameters (fouling of the different type of heaters) were considered. Here, we
also could find outliers, and the PE procedure worked successfully. In the second version we selected

" more realistic and more important characteristics of the circuit units as parameters, namely
thermodynamical efficiency of turbine stages, efficiency of water separator, fouling of heaters etc.
According to the result of these investigations the application of this PE seems to be very promising.

In the Appendix one can find the MATHCAD programs of these five illustrative examples.

Tasks for the future

In order to add this PE procedure to the PROBERA flow-sheeting program the following tasks must be
carried out:

1. Measurement points must be selected as many as possible.
2. The sources of measurement error must be detected and estimated, namely, system noise, calibration

error, zero point error, systematical measuring error and the error of the transducers. It would be also
useful to analyse the model computing reactor thermal power, as input information.
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3. Parameters must be selected. Here, in order to minimise the chance of misleading estimation, so
called multilevel, or nested estimation could be considered. For example, first only the overall heat
transfer coefficient can be estimated, and then the value of the heat conduction resistance and internal
and external heat transfer cocfficients can be considered as parameters at the second level.

4. These three steps could be summarised in one menu point called as Design Phasc. The user can select
variabies and parameters {reely, and check their compatibility.

5. Pre-processing algorithm can be coded as second menu point containing the steps of this PE phase.

6. The third menu point as processing phase must contain different estimation procedures and a simple
knowledge base could support the user to select the most appropriate method. Linear estimation with
least square objective, ridge cstimation, linear estimation with constrained and non-linear estimation
with constrained would be the most probable candidates, however other methods having other type of
objectives (i.e. maximum likelihood) could also be considered.

7. Post-processing phase concems different statistics, as residual, weighted empirical standard
deviation, Durbin-Watson D statistics, the covariance matrix, the confidence interval eic., there should
also be a built-in knowledge base that could help the user to understand the physical meaning of the
result and to accept it or reject it and carry out a new estimation.

This PE procedure could be a module in PROBERA flow-sheeting program and could improve its
ability for state estimation of power plant units significantly,
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INTRODUCTION

Reliability and efficiency arc among the most important features of up-to-date operation of
plants where technological processes of industrial chemistry and energy production are taking place. Of
course, reliability and efficiency are closely interrelated as a reduction in the efficiency of major
equipment, losses in production due to unforeseen breakdown and increased costs of repair affect the
economic efficiency equally unfavourably. Figure 1 shows the theoretical relatonship between
maintenance costs and availability. In this Figure, preventive maintenance is minimum along section 'A'
and thus availability in terms of percentage of actual hours of operation as compared with the planned
hours reduces due to frequently occurring breakdowns, accompanied with increasing costs resulting
from subsequent repairs. The correct preventive maintenance schedule along section "B’ results in
increasing availability with also the costs of preventive and subsequent maintenance lying well below
the costs according to strategy 'A'. At the same time, an over-estimated preventive maintenance demand
like in strategy 'C' results in increasing standstill that is in reducing availability /1/. Hence, in fact, the
relationship between availability and maintenance costs can be oprimised although in practice it is
difficult to express this optimum numerically.

Malintsnance costs

0 100%
Avalllebility

Fig. 1

The close correlation between reliability and efficiency of operation comes in focus especially if
reliability implies not only unforeseen standstill prevention but also control of disorders in major
equipment which, although not preventing the equipment from operating at given instant, may reduce
the efficiency of operation considerably and result sooner or later in a temporary and partial reduction in
performance due 10 inevitable repair /2/.

Measurements alone are not enough to determine reduction in the efficiency of power plant
operation. Use of a mathematical model describing given process, usually together with material and
energy balances, is therefore necessary /3,4/.

The energetic efficiency of certain cquipment like turbines and heat exchangers may reduce
during operation as a result of leakage, contamination ctc. These changes are typically slow and they
have no direct drastic effect upon operation.
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A mathematical model describing the process is used on the basis of measurement of certain
typical operating variablcs to investigate the state that is 10 answer the question whether the difference
between the measured values and those supplied by the model resulted from erroneous measurements or
the state of some major equipment changed so that the model parameters characteristic of that
equipment were no longer valid. What we want to know is what kind of change has occurred or is about
to develop in which of the equipment.

1. MEASUREMENT CORRECTION

The model parameters characteristic of the energetic state of the equipment like stage efficiency
or thermal transmission factor etc. are based essentially on parameter estimation. However,
measurement correction is necessary to decide whether new parameters have to be determined that is
parameter estimation has 10 be carried out, or the significant difference between the calculated and
measured values resulted from erroneous, failing measurernents only /5/.

Values measured in the course of operation include pressure, differential pressure, temperature
etc. For different reasons (instability in time, error of measuring device, recurrent measuring error etc. ),
the values so obtained are more or less erroneous. A condition for acceptability of the measurements is
that they satisfy the material and energy balances describing the process.

1.1 Linearization of the balance equation

The process is usually described by the following non-linear input-output model:
y=F(p.x). (L)

where y and x are the vector of the output and input variables, respectively and p is the vector of the
parameters.

Linearizing around the state of operation according to input variables we get:

JF,

y:F(pold’xm)'}' - (x_xm)'
ox,

Poit +Xm
or (1.2)
y=y +A(x-x_).
where - P, , the original parameters, before the parameter estimation
- X, the vector of the measured values

- Y., the computed values

Essentially, equalisation i$ a correction of the values less deviating from the measured values in a
certain sense and at the same time satisfying the heat and material balances constituting the heat-flow
diagram model. It is usually minimisation in a weighted quadratic sense where the weight matrix is a
reciprocal of the diagonal matrix set up of mean square deviation of measurcments,
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New variables are introduced for the lincarized model in order to use the usual form:

X
Y:[ } and b:yc'“AXm

y (1.3)
Thus the original linear model can be written in the following form:
WY-b=0 (1.4)
where
W=[-A! +E] (1.5)
Let
xm
Y = [ ] (1.6)
Ya
be the vector of measurement results.
Now quadratic form
QY)=(Y-Y,)'V(Y-Y,) (1.7)

is minimised by linear balance equalisation, where the weight matrix is 2 diagonal matrix containing the
square of the standard deviation of the measured input and output variables:

-

2
Ami

V= : (1.8)

Now our task is to find Y which minimises Eq.(1.7) and at the same time satisfies Eq.(1.4). It means to
find Y which satisfies the balance equations and is so close to the measured values, Y, as possible.
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1.2 Computing corrections

Let us introduce the correction vector, or the error of measurement as

c=Y-Y, 1.9
and the balance-error vector is:

f=WY_ -b (1.10)
Then our task to minimise

Q(e)=c"Ve (1.11)
under the condition

We+f=0 (1.12)

A problem (1.11-1.12) can be solve using Lagrange multiplicator method. The new objective function is

L(c,A)=c"VIc+AT (We+f) (1.13)

The extremum must satisfy the following necessary conditions

%if-: 2VIc+ W =0 (1.14)
dL
i c (1.15)
From (1.14) we get
1 -
C=—"2-W“;\. (1.16)

and substituting this into (1.15) and expressing A

A=2(WVvwT) ' f .17

Then from (1.14) the optimal correction is

C=-VWI(WYW")'f (1.18)
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The comrected measured values are

Y_ =Y +8& (1.19)

cal

1.3 Condition for accepting measurements

Now we have to check, whether these measurements, Y can be accepted or not.
Substituting € into (1.11) we get the measure of error

Q> =Q(&)=fT(WVW")'{

This measure is invariant 1o the scaling of the balance equations. It means that it depends neither on the
measurement units of Y nor the way of the derivation of the balance equations.

According to (1.12), there is a homogen, linear relation between the error of measurement ¢ angd the
balance error f. Of course, because W is not quadratic, there are more variables than balance equations.
The freedom of the system is the difference of the number of columns and of rows.

If we suppose that the ¢ error has normal distribution with 0 mean, then f also has normal distribution
with 0 mean. Using linear transformation it is possible to transform f into ¢ which has zero mean with
unit deviaton.

1
@ =(WVWT) 2f (1.20)

Therefore @ has similar distribution as f.
Because

> =979 (121

Consequently q has also normal distribution with 0 mean and with unit deviation , therefore q2 has xz
central distribution with the freedom of the system. In our case this is equal NI, the number of the input
variables x, because for every output variable we have one balance cquation, namely W has NI + NO
columns and NO rows, where NO is the number of the cutput variables of the linearized model (1.2).
We shall use this information to decide, whether the measurement can be accepted or not. We have to

check whether the measurement errors € satisfies the hypothesis namely normal distribution with 0

mean. Now we shall test the consequence of our hypothesis namely q"" has x2 distribution with NI
freedom. Our hypothesis can be accepted if

a’ £ X, (1.22)

where X ;. is the value of the xz (khi) distribution with freedom NI and at confidence level p. Usually,

p=0.95 is used.
If the relation (1.22) is not true, we discard the hypothesis and suppose that the measurements have
exceptional error.

10
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1.4 Detecting outliers

If exceptional error has been detected, (1.22) was not true, then let us suppose that for one of the
measured vartables which has index r, the mean of measurement error not zero.

E(c,)=h=#0 (1.23)
or
E(c)=e h (1.24)

where c_ is the r-th component in vector ¢, and e, the unit vector shows in the direction of the r-th co-
ordinate axis.
Applying transformation (1.20)

M= (WVWT )_12’ w (1.25)
Equation (1.12) can be written as

Me+¢=0 (126
Then taking the mean value of (1.26), the mean of @ or -@ (the sign is not inu:nestiﬁg)

E(-@)=E(Mc)=ME(c)=Meh=mh (1.27)
It means that @ must be paraliel to m,

m, = Me, (1.28)

which is r-th column vector in M matrix.
Therefore for the exceptional error €, the so called Almésy gamma vector /5/ is:

Y, =cos(m,0)=0 (1.29)

So we have to compute the angle between every column vector of M and @, and if this Almésy v, =1

then this r-th measurement is suspected to have exceptional error.
Because in case of vectors a and b

. 4
cos(a,b) = ____2:_]3____1 (1.30)

(a"a)? (b"h)?

11
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then

T
m.
Y;= : s : j=12....... NI+ NO
(m;m,)?(p"p)?
(1.31)
¥ = —l—[diag(h)WT (WYW™)™f] (1.32)
q
Considering the transformation the vector of Alm4sy ¥ can be computed as
H=W'(WYW")" W (1.33)
.
h,=(H,) 2 i=hL2. NO+NI
(1.34)
and
[h, ]
h,
diag(h) = . (1.35)
L ' hNO+NT N
where

NI - the number of input variables
NO - the number of output variables

12
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2. PARAMETER ESTIMATION

In casc the 7 test is negative, (1.22) is not true we have to check whether one of the variables has
Almésy s gamma near to one. If it is so then this variable can be deleted or its measured value can be
substituted with the computed value or the measure can be repeated. If we do not find such a variables
then parameter estimation will be carried out.

Hence, if the xz test is negative but a value near 1 of Alm4sy’s gamma is not obtained for any of the
measured variables, it can be rightly assumed that a change has taken place in the state of equipment,
resulting in a new state that can not be represented by the value of model parameter associated with the
old state. E.g. also model parameter kF characteristic of the value of the heat transfer ability for given
heat exchanger shall be reduced accordingly for the sake of appropriate modelling in case of
contaminated heat transfer surfaces.

2.1 Linearization of the model

Since the changes are slow and thus difficult to detect them, a linearized model is used again where
linearization according to the model parameters is also carried out. That is

Y=y, +AX-%_ )+B(p-py) (2.1)
where B is the Jacobi matrix.
B,;= 95 (2.2)
apj < Pot X

and x_ is the vector of the measured input variables, p,; is that of the old parameters.
2.2 Parameter estitnation without constrains
Taking into consideration this identity
x=x, +E(x—x_) (2.3)

and introducing variables

y =& x =% e wm=F " 24
| Ay * ] Ap an “|A B 24)

where

Ax=x-—x_

Ay=y-y, (2.5)
Ap = p—pold

13
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the linear model (2.1) can be expressed as
Y, = MX, (2.6)

As the layout of the variables shows (2.4), now not only the parameter vector p but also the input vector
is present on the right-hand side that is also the input vector shall be determined in the course of the
estimation process.

With matrix V used again as a weight matrix, the expression to be minimised will be

J(X,)=(Y, -MX )V7(Y, -MX,) @.7)

The solution can be written in similar way then in case the measurement correction, namely

X, =MV'M)"MTVY, (2.8)

2.3 Application ridge-regression

Sometimes it can happen that one of or more of eigenvalues of the matrix M” V'M is/are very small,
because of the weak correlation between the measured variables and parameters. In that case we can use
the ridge-regression, which is a distorted estimation /6/. The optimal estimation is

X, =(M"V'M+AE)"MTVY, (29)

This A so cold ridge parameter increases the small eigenvalues of M” V™' M. The estimation of a

parameter X is said to be stable if it is invariant to the change of A.

P

Employing this method one can select and filter out parameters which can be "badly” estimated, and
their reliable estimation may need new output variables to be considered and measured.

2.4 Parameter estimation with constrains

Note that in practice, an arbitrary domain one may use for minimisation of (2.8) is usually not
permissible. Namely, an unconstrained linear parameter estimation can yield also a solution resulting in

minimum value for J with, however, the physically optimum values of Xp {alling within the
inadmissible domain (e.g. the active heat transfer coefficient increases).

This means that for certain parameters

X 20 (2.10)

Pi

constrain must be considered.

14
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Instead of minimising (2.7) under the condition (2.10), we can transform the linear objective function
(2.7) with its constrain (2.10) into a non-linear objective function without constrain.

Let us introduce for this the variables

o*=X (2.11)

1 Pi

Then for every value of ., , Xm is not negative if the solution is real. The objective function (2.7) can
be written in the following form:

J(XP‘,XH...OL?)= 2 Py i, : 5O anes 7 (212)

where

NI - number of input variables and NO - number of output variables.

Now, we can minirise J(Xp. ,sz ,....,ociz,....) without constrains, then using (2.11) to get Xp,'

2.5 Computing upper and lower bound for the estimated values.

In order to estimate the "fitting" of the parameters, we can compute their upper and lower limit at a
certain confidence level assuming that the probability distribution of the measurement error has normal
distribution.

The residual deviation is the value of (2.7) at XP = ip_o. Then the residual deviation can be determined
as

J(X)
§f =t (2.13)
f
where f is the number of freedom.
f=NI+NO-(NI+NP)=NO-NP (2.14)

Now the covariance - matrix of the estimation, can be estimated in the following way

c=s>(MTVIM) (2.15)

Then the main diagonal elements of this matrix are square of the deviation of the parameters. Assuming
normal distribution, the interval of upper and lower bound of the parameters is

X, —,/cﬁtﬁz <X, <X, +,/cﬁtf'z (2.16)

where t, the valuc of the Student distribution with f freedom at € % confidence level and

z=1-¢/100 217

15
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3. SUMMARY

Now, we can summarise the recommended algorithm of the state estimation procedure.

Using measured input values, the measured output variables can be computed and the computed and
measured values can be compared. The deviation between these two type of values is called the
“model"-error, caused by wrong measurement or modelling error, or incorrect, not updated model
parameters.

One can utilise the measurement from the point of view of estimation of new state, if the measurement
error of the measurement devices are smaller than the "model"-error. If it is true we have to check
whether measurements are fitting "close enough" to the model or not, and outliers must be filtered out
(sce measurement comrections, outhier detection).

If there are outliers then their measured values can be substituted with the computed values or they can
be left out. If even after this filtration the fitting is not "close enough" - assuming that the modelling
error is negligible - new model parameter can be estimated. We have to analyse whether the measured
variables are adequate for estimating the considered parameters. This means that one has to study
matrix B, (2.2) which shows the relations between measured variables and parameters, as well as one
can employ ridge-regression and other statistical test (Durbin-Watson D statistics or Kolmogrov test) to
determine the goodness of the estimation.

16
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Parameter Estimation

This MCAD program illustrates the parameter estimation procedure described in our report.

Flow-sheet of PROBERA 02_322

PHﬂBEHﬂ Ekvationslssare T/T-matris Integrator
KS03./504 -
322 P1-P3 - S =
) _u_IuH.Fir
N/ K301./302 = U s11/512 KS05/506],
KS01/502 742
Ksoszsoa_/b KA05/904 s12 P1
1 KS01./502
32z2]E1-E2
1] 721 P1-P3 __<::}
! - K507.508 [J
KS09./510 N = ¢ Ikz05-/204
=1316]* K301s302 721 Er-E2 | -
K301/302
K503/504

The measured input and output variables as well as parameters were selected as below ;

lnput variables: x1 - Temperaure 316 (°C) L 2376
x2 - Mass flow rate K305/721 (kg/s) Xm-=| 032
x3 -Temperature K550 = K501-0.042 ( °C ) 17.358
1100 |
Output variables: y1 - Mass flow rate K301/322 (kg/s) 23.2
y2 - Temperaure K501/322 (°C) 186
y3 - Temperature K503/322 (°C) 126
y4 - Mass flow rate K301/721 (kg/s)
y5 - Temperature K509/721 (°C) 18
y6 - Temperature K503/721  (°C) Ym | 22
y7 - Temperature K511/721  (°C) 22.2
yB - Temperature K505/721  (°C) 218
y9 - Temperature K507/721 (°C) 179
y10- Mass flow rate K301/712 (kg/s) ‘
y11- Temperature K503/712  (°C) 180
119.8 |
These values were measured .
Parameters : p1 - Flow resistance of cold stream in 322 (-) 159.42
p2 - Flow resistance of warm stream in 712 (-) 38.29
p3 - Flow resistance in 721 (-) | 81.577
p4 - Fouling in primer side of heater322  (m) P
p5 - Fouling in primer side of heater 721 (m) 21107
16.3:107 |




These parameter values were the original, standard values in the PRCBERA flow-sheeting pregram.

Computed values of the Output [100.07 |
using nonlinear Model represented 23.847
by PROBERA : 18738

124.89
18.064
Ye =1 22.179
55.479
22.409
18.004
[89.88
20314

Measurements Errors :

The measurement error for temperature measurements was 0.1 °C, except x1, foritwas 0.5 %.
For flow rates 1.5 % and 2 % relative errors were considered, respectively.

'yco.o.msf

0.1
0.1

for Input : for Output :
y c3-0.015

X ., -0.005
my,

y 0.1
0.1 0.1
0.1
0.1

y 09'0'02

2 0.1
le—[,\ml-0.0Z 6. =

01 |

in order to decide whether parameter estimation is necessary or not, the commulative measurement
and modelling errors are computed. The modeling efror is the sum of the differences between
measured and the corresponding computed values.

Inspection
Comparing Measurement Error with Modelling Error :
Modeling Error :

Number of Output: NO:=11  i'=0.NO- | MoE, := 'ymi- Ye



Commulative Modelling Error: RMoE, =0 RMoE, 1 '=RMOoE, + MoE,

Commulative Measurement Error : RMeE, =0 RMeEi 1 RMEeE, + o y.

60 T T T | I

Comparing modelling error and measurement error

This figure indicates, that the flow sheeting medell is not adequate, or there are wrong
measurements or certain changes took place in the state of process units, because the
model-parameters are not adequate. We suppose that the flow-sheeting modell is verified, so
only the possibility of the two other cases will be considered

For further computation, the variables can be normalized using the computed values as
references

Normalized vectors ;

. Gxi
NI :=3 150N~ | Nxp =1 No, =|—
' i Xm.
i :=0..NO N ym, N o N 1
1:=0.. -1 E e g, T— =
ymi Ye Yi ye Yo

First, we shall looking for wrong measurements, so called outliers.

Measurement Correction
Model linearization using numerically computed Jacobi matrix :

Te create the Jacobian matrix for measurement carrection, the output variables are computed
in two different points of the input variables represented by the first and third elements of vectors
fihe second value is the measured value of the input variable.

23.52 1031 17.184
%1 :1=2[23.76 x2 =10.32 x3:=|17.358
\ 24 0.33 17.532



We normalize these input values , too.

i=0. N[~ ‘
xl. x2. x3.
lei:r‘— Nxzi.=~;—'— Nx3i:='\'—--'—
mo m] ‘ 1'1'12
Computing function values, Yikf at x1,x2,,x3,
[100.07 ] [100.07 ] 100,07
20.604 24.089 23.847
18.691 18.785 18.74
124.89 124.89 124.89
18.04 18.088 18.065
Y122 ={22.003 Y322 :=|22.357 Y212 '=| 22.18
55.458 55.503 56.686
22.233 22587 22.407
17.982 118023 18.001
189.88 189.89 189.88
| 20.21 | 120.418 | 120.314 |
Normalization again.
1:=0..NO-1
Y122, Y322, ' Y212,
NYI22, = —— NY322, :=— NY212, =
y ci ‘ Y ci y ci
[100.07 ] [100.07 | 100,07 |
23.847 23.845 23.844
18.738 18.601 18.88
124.89 124.89 124.89
18.065 17.907 18.226
Y232 :=| 22,181 Y221 =] 22.134 Y223 :={22.222
54.345 55.321 55.634
22.405 22.363 22.453
18.003 17.842 18.158
189.98 189.87 189.9
[20.317 | 20.215 | (20412




Y232i Y221i Y223i
NY232, = N‘Y?.Zli I . N‘{223i =
Ye. Ye. Ye.

t 1 1

Evaluation of the Jacabi matrix

The three columns of the Jacobian are computed separately :

L A2. = A3, :
s lez— leo ! Nx22— Nx2, ! Nx32— Nx3o

i=0.NO-1 ,  NY3ZZ-NYVI22, o NY232-NV21Z, o NYZ23-NY22l,

then they will be augmented:

A Zaugment(Al,A2) A = augment(A,A3)
Construction of matrix W and vector b :

The standard form of the correlation matrix is created (see Report ), which represents the
linearized balance equations.

WY -b =0
E =identity(11) W .=Zaugment(-A,E) b :=Ny.- ANxp,
Construction of extended measurement vector Y |
This vector consists of the input and output variables :
Number of input variables : NI :=3

i:=0.NI- 1 NY 5 Nx . NY o =Nx .
[§ H ]

i *NL.NO+NI-1 NYp =Nym  NY¢ =Nye

Generally, the measured values are not satisfied these balance equations :

Computing the error vector :

£:=W-NY - b

Construction of weight matrix ,V

j'=0..NO+ NI~ | i=0.NO+NI-1 V=0
i.20.NI- I Vi ::(chi)“ Z,;70y
i =NL.NO+ NI - | N 2 .
Vil '_(qui-m) SRR A

The weigthed square of the error vector will be minimized under the constrain of the balance
equations.The result will be the corrected values:



Number of freedom : F =NI F=3

x? distribution value at confidence p = 0.95is : 7.815 , see Mathematical Handbook for
Sciontists and Engineers, Korn & Korn, McGraw-Hill Co.

Because of Q > 7.815 we are looking for outliers, and compute the gamma index :
Computing Almasy gamma indey. :

1:20.NO+NI- 1

o= w (wevewT) h=(H )2 vE —cli-[diag(h)-WT- (w-v-wT) l-r]

Y, =0.971

i
!

Almasy gamma l;_.l 05 v, =-0.974

o 0 Nw.n. mﬂnm

10 15
i

Conclusions : According to the statistical test, x2 input or y7 output is "wrong" measurement.
ltis pausable to vote for y7 and correct. The corrected value for y7 is the com-
puted value.

Using this corrected value, 55.479 as "measured value” in vector y,,,, the result will show you that

even now parameter estimation is necessary, because Q > 7.815

Parameter Estimation
Linearization

The Jacobian matrix can be computed similarly , now we have five parameters instead of three input.

Construction of matrix B



100 30 60 1-10°° 4-10°3
pl={159.42 p2 :=:38.29 p3:=|81.577 p4=i2.1.10°% p5:=(63-10°%
170 50 100 3.10°5 81075
i:20.2
Npli :=E-B Npll. =B-2~' Npiii =£3—i Np4i 2=-Ifi- NpS'. :-i-)i .
o Py 2 P3 Py
[122.72] [97.205 ] [100.07 ] (100.07
23.83 23.848 23.842 23.849
19.224 18,679 18.698 18.794
124.88 124.88 124 .88 124.89
18.119 18.059 18.017 18.129
Y12222:2]22.671 Y32222:=| 22.1 Y21222:=(22.162 Y23222 :=|22.198
55.535 55.469 55.429 55.542
229 22.331 22.393 22.428
18.059 17.994 17.954 18.067
189.89 189.88 199.79 178,16
120.599 | | 20.269 | 20.195 | | 2047 |
i:=0.NO- 1
Y12222. Y32222, Y21222. Y23222.
NY12222, := ' ONY32222, = ' NY21222,:= ' ONY23222, 2 !
Yo, Ve, ¢ Ye
[ 100,07 | [100.07 ] [100.09 10005 |
23.848 23.844 23.848 23.849
18.704 18.8 18.707 18.763
141.26 114.66 124.89 {24.89
18.204 17.977 18.069 18.062
Y22122:=|21.865 | Y22322 :=]22.406 Y22212:=[22212 ¥22232 :2|22.157
55.616 55392 55.483 55.477
22.075 22.646 22.441 “[22.389
18.151 17.905 18.005 {8
189.88 189.88 189.89 189.88
[20.342 | 20.278 | | 20.33 | 120.305 |
Y22122. Y22322, 22212. Y22232,
NY22122, = ! NY22323, = © NY22212;:=  NY22232, = :
Ye, Ye. Ye Ye.



[100.07 | 100,07 ]
23.847 23.849
18.663 18.796
124.89 124.89
17.978 18.132
Y22221 :=|22.154 Y22223 :=[22.201
55.391 55.549
22.382 22.434
17.909 18.068
190.7 189.26
120.342 | 20.292 |
Y22221. ¥22223.
NY22221, = ! NY22223, := i
y ¢, y ¢,
i=0.NO- |
s NY32222, - NY12222, 52 = NY23222,- NY21222, B3 = NY22322, - NY22122,
! Npi, - Npl, ! Np2, - Np2, ‘ Np3, - Np3,
B4 e NY22232, - NY22212, Bs. = NY22223, - NY22221.
' Np4, - Np4, i NpS, ~ Np5,

B := augment(B1,B2) B =augment(B,B3} B :=augment(B,B4) B :=augment(B,B5)

j=0.NI-1 i'=0.NI+NO-1 M, .:=0 S; ;=0
i=20.NI-1 M, =1

i =NL.N[+NO-1 j=0.NI-1 M. =A 4.
Number of parameters: NP .=5

jE0.NP-1 S, =B M = augment(M, ) NdY :=NY ;- NY

Analysis of ridge regression ,,> 0

In order to get realistic results rigid regression can be used, because of the eigenvalues of the
system matrix are too different :

A :=1000

Eigenvalues of the original system matrix Eigenvalues of the original modified system matrix



eigenvals(MT-‘v" [-M) =

[ 1.248-10"
1.978-10°
8.07610°

1.809+10°
968.285
0.675
8.534

| 139.471

eigenvals(MT-V' LM+ L-identity(NT + NP)) =

NdX := lsolvc(MT-V' LM + Lidentity(NI + NP),M " V" ‘-NdY)

NdX =

Even now, we have got negativ changes for the third and fifth parameters.

4.574-107 |

-0.008
-0.019
0.009
0.006
-0.002
0.002

-8.23:10 *

i0LNI- 1 dX;:=NdXqx
1
{=NLNI+ NP~ 1 dX; = NdX;p;_

Estimation without constrains

New input values :

xle FXpgyt dX,

<-- Normalized corrections

Absolute corrections --—>

.\'2ei=xml+dX‘ x3e:=xmz-¢-dX2

New parameter values:

ple=pl,

- dX,

p2e =p2,+dX,

p3e =p3,+dX;  pdpi=pd +dX

[ 1.248-10"
1.988:10°
8.176°10°
2.809-10°
1.968-10°
1.001-10°
1.009-10°
| 1.139-10°

[~1.087-1067 |
~0.002 ‘
-0.327

1.398

0216
-0.198

4.491-10°°
|-5.185°10 % |

dX =

Xl ¢ =23.76
X2, =0318
X3 ¢ = 17.031

pS . =p5, +dX,



ple=160818

[ 159.42 ]
38.29 <— Old parameters p2 ¢ =38.506
pi= 81.577 —a137
21-10°5 New parameters —> P3¢ =8l
631077 P4, =2.10410"°

pS . =6.29510°
in order to ensure, that the change in the parameters be positive, one can use estimation with

constrains.

Estimation with constrains

From physical point of view the change in parameters must be positive (fast five elements).
In order to ensure that constrain is introduced, namely the change can not be negative.
Introducing variable transformation, x > x2 minimization without constrains can be used.

NI+ NO-1 2 2 7 2 2
NdY. - (M. ja+M B+M. v+ M. 0 +M. 2 +M. O+ M 0 +M-
G(a,B,y,5,6,4,n,0) = Z [ J ( i.0 J-lB j.2 7 J.3v j.4 J,SC 1.6 ’;,7,
j.-.—.O ."j

For initial values the results of the estimation without constrains are employed if they were
positive, and zeros were used in opposite cases.Use normalized values!

@:=0.0 f:=0.0 1200 5= |2220

._ 10.216 . f -8
£z |—/——r =0.0 4.491-
38.29 ¢ n.= 449110 7 05 0:=00
2110

Given
G(a,B,71.5,5,0,7,00=0
1=1
I=1
1=1
I=1
1=1
1=1
1=1
. [ A
w ::Minerr(a,[i,-{,ﬁ,c,c,r],OS 0 ] w, [0
0 0
) Wy .
(ws)*
0.094 3 0.009
w= NDX := 2 NDX =

0.006

0.002




i=0.NI-| DX, :=NDX;X oy

i =NL.NI+NP- 1 DX, :=NDX:p,_

[0

0

0
1.398
0.216
0

4.491-10
L0

DX =

New input values :

xle.‘=xm0+DX0 x2e-‘=xml+Dx| XBC:=X%+DX2 x1«=23.76

X2 =032
X3 o = 17.358

New parameter values:

ple =ply+ DXy p2,:=p2, + DX, p3e=p3;+ DXy pdgoi=p4, + DX, PS5 =p5 + DX,

Old parameters :

ple =160.818
[ 159.42
3829 p2 ¢ =38.506
p=| 81577 p3 o =81.577
2.1010°? -
~ pd e =2.104-10
6.3410
i —5
PSe=6310

Now on the bases of the new input values and new parameters, new output values can be
computed by the PROBERA code, however no significant change took place in the parameter
values.



